Tiling space with notched
نویسنده
چکیده
Stein (1990) discovered (n l)! lattice tilings of R” by translates of the notched n-cube which are inequivalent under translation. We show that there are no other inequivalent tilings of IF!” by translates of the notched cube.
منابع مشابه
Hyperbolic Regular Polygons with Notched Edges
In this article we solve the tiling problem for hyperbolic and Euclidean regular polygons whose edges are notched with matching bumps and nicks.
متن کاملRigid Tilings of Quadrants by L-Shaped n-ominoes and Notched Rectangles
In this paper, we examine rigid tilings of the four quadrants in a Cartesian coordinate system by tiling sets consisting of L-shaped polyominoes and notched rectangles. The first tiling sets we consider consist of an L-shaped polyomino and a notched rectangle, appearing from the dissection of an n×n square, and of their symmetries about the first diagonal. In this case, a tiling of a quadrant i...
متن کاملTiling with notched cubes
In 1966, Golomb showed that any polyomino which tiles a rectangle also tiles a larger copy of itself. Although there is no compelling reason to expect the converse to be true, no counterexamples are known. In 3 dimensions, the analogous result is that any polycube that tiles a box also tiles a larger copy of itself. In this note, we exhibit a polycube (a ‘notched cube’) that tiles a larger copy...
متن کاملLattice Tilings by Cubes: Whole, Notched and Extended
We discuss some problems of lattice tiling via Harmonic Analysis methods. We consider lattice tilings of R by the unit cube in relation to the Minkowski Conjecture (now a theorem of Hajós) and give a new equivalent form of Hajós’s theorem. We also consider “notched cubes” (a cube from which a reactangle has been removed from one of the corners) and show that they admit lattice tilings. This has...
متن کاملParity and tiling by trominoes
The problem of counting tilings by dominoes and other dimers and finding arithmetic significance in these numbers has received considerable attention. In contrast, little attention has been paid to the number of tilings by more complex shapes. In this paper, we consider tilings by trominoes and the parity of the number of tilings. We mostly consider reptilings and tilings of related shapes by t...
متن کامل